Development of Multi-Dimensional Data-Modeling Software
نویسندگان
چکیده
منابع مشابه
Static Modeling of Oil Field Mineral Scales: Software Development
Mineral scale deposition in near wellbore regions of injection wells is one of the main challengeable issues during the water injection process, which magnifies the importance of robust models in predicting the amount of mineral scale deposition such as calcium sulfate. One of the main challenges of CaSO4 scale is in carbonated reservoirs, in which sensitive behavior is observed in related to t...
متن کاملModeling Multi-Dimensional Data and Control ow
Multi-dimensional (M-D) signal processing is a key component of most real-time signal and data processing VLSI systems in industry. Handling the M-D nature of data in an eecient way is crucial to arrive at acceptable system implementations. This aspect of design has often been ignored up to now in high-level synthesis. In this paper, a polyhedral based model is presented for the linear, piece-w...
متن کاملMulti-Dimensional Success Factors of Agile Software Development Projects
This paper focuses on providing a multi-dimensional view of success factors in agile software development projects. This paper starts by surveying the literature for the success factors of agile software development projects. Therefore, it surveys the success factors that were published in research papers, articles, and technical reports related to actual agile projects. For facilitating the un...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Latent Sparse Modeling of Longitudinal Multi-dimensional Data
We propose a tensor-based model to analyze multidimensional data describing sample subjects. It simultaneously discovers patterns in features and reveals past temporal points having impact on current outcomes. The model coefficient, a k-mode tensor, is decomposed into a summation of k tensors of the same dimension. To accomplish feature selection, we introduce the tensor ‘latent F-1 norm’ as a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer Chemistry, Japan
سال: 2004
ISSN: 1347-1767,1347-3824
DOI: 10.2477/jccj.3.77